CRYSTAL AND MOLECULAR STRUCTURE OF JOLKINOLIDE B, A NOVEL OXIDOLACTONE DITERPENE

Daisuke Uemura, Chuji Katayama, and Yoshimasa Hirata Chemical Institute, Faculty of Science, Nagoya University, Chikusa, Nagoya, Japan (Received in Japan 25 November 1976; received in UK for publication 7 December 1977)

A crystalline oxidolactone, $C_{20}H_{26}O_4$, was isolated from <u>Euphorbia Jolkini</u> Boiss, and called jolkinolide B. The structure of jolkinolide B was reported¹⁾ on the basis of chemical reactions and spectroscopic evidence. The structural elucidation by X-ray crystallography of jolkinolide B was undertaken to determine the detailed configuration and to observe the bonding system of oxidolactone group²⁾. Now, we wish to report the results of X-ray analysis and the growth inhibition of jolkinolide B to cultured Hela cell.

The recrystallization of jolkinolide B from acetone gave well formed, colourless, and monoclinic crystals. The space group is P2₁ and the lattice constants are a= 12.09 Å, b= 10.75 Å, c= 6.91 Å, and β = 103.2°. The final R index for 1756 reflections is 0.08. A view of the molecule and the stereochemistry of jolkinolide B (1) is shown in the Figure,

The absolute configuration at C-5 and C-10 agrees with the result which was determined by chemical transformation of jolkinolide B to (-)-ferruginol³). A planar zig-zag conformation of $H-C_9-C_8-C_{14}$ -H accounts for the long-range coupling between H-9 and H-14 (J< 1.0 Hz), which has been confirmed by the decoupling procedure in the NMR spectrum of jolkinolide B. The β -configuration of two epoxides in ring C conformationally fixed to the boat-form is consistent with the result from epoxidation of jolkinolide A (2) with m-chloroperbenzoic acid. The presence of 1,4-dioxaspiro[2,4]hept-6-en-5-one system makes the epoxide ring in oxidolactone very distorted. Bond angles and bond lengths of two epoxides in jolkinolide B are summarized in the Table. The growth inhibition of jolkinolide B to cultured Hela cell was examined and ID₅₀ of jolkinolide B was 2.3 µg/ml. Further investigation about physiological activities of jolkinolide B are in progress.

283

Table. Bond angles and bond lengths of two epoxides in jolkinolide B.

Bond Angles		Bond Lengths	
C8-C14-01	58.7°	C8-C14	1.51 Å
C14-C8-O1	58.2	C8-01	1.44
C8-01-C14	63.1	C14-01	1.44
C11-C12-02	61.3	C11-C12	1.46
C12-C11-O2	57.4	C11-02	1.46
C11-02-C12	61.3	C12-02	1.40

REFERENCES

- D. Uemura and Y. Hirata, <u>Tetrahedron Letters</u>, 1387 (1972); D. Uemura and Y. Hirata, <u>Chemistry Letters</u>, 819 (1974).
- 2) R.D. Hoffsommer, H.L. Slates, D. Taub, and N.L. Wendler, J. Org. Chem., 27, 353 (1962).
- C.W. Brandt and L.G. Neubauer, <u>J. Chem. Soc.</u>, 1939, 1031; C.H. Brieskorn, A. Fucks, J.B. Brendenberg, J.D. MaChesney, and Wenkert, <u>J. Org. Chem.</u>, <u>29</u>, 2293 (1964).